

A PATHWAY APPROACH TO PREDICTING THYROID HORMONE DISRUPTING ACTIVITY OF CHEMICALS USING IN VITRO, EX VIVO AND IN VIVO ASSAYS

Michael Hornung¹, Sigmund Degitz¹, Joseph Tietge¹, Joseph Korte¹, Jonathan Haselman¹, Patricia Kosian¹, Annelie Lindberg-Livingston², Emily Burgess² ¹U.S. EPA, ORD, NHEERL, Mid-Continent Ecology Division, Duluth, MN ²Student Services Contractor, Duluth, MN

Background

- Safe Drinking Water Act & Food Quality Protection Act mandate that USEPA assess chemicals for endocrine activity
 - Many chemicals with limited or no information on thyroid activity
- Need to prioritize what chemicals should be tested

Objectives

- Develop higher throughput, mechanism-based, predictive tools for disruption of thyroid hormone
- Support the development of chemical structure activity relationship (QSAR) models for thyroid hormone disrupting activity = <u>predictive</u> <u>models</u>

Interference with Maintaining Circulating T4 by HPT

Tiered Assay Approach from Molecular Initiating Event to Adverse Outcome

Amphibian Metamorphosis Assay

TPO Inhibition Assay

- Prepare microsomes from thyroid glands (porcine)
- In Vitro Assay: 96-well plate
- Colorimetric Endpoint

Selection of Chemicals to Test in the In Vitro Assays

Test chemicals based upon <u>structural similarity to</u> <u>known active chemicals : model pharmaceuticals</u>

$$\begin{array}{c} \text{N-CH}_3 \\ \text{S} \\ \text{methimazole} \end{array}$$

Test chemical classes

Selection of Chemicals to Test in the In Vitro Assays

- Test additional chemicals based upon <u>structural similarity</u> to known TPO substrates: potential competitive inhibitors
 - Endogenous substrate: tyrosine

 TPO enzyme assay substrate: guaiacol (o-methoxyphenol)

Test Chemical Classes

alkoxyphenols

salicylates

benzoates

phthalates

In Vitro TPO Inhibition by Model T4 Synthesis Inhibitors

Identification of TPO inhibitors

TPO Inhibition by mercaptobenzothiazole (MBT) and dimethyl hydroxymethylpyrazole (DMP)

Test at Next Higher Level of Biological Organization

Ex Vivo T4
Synthesis and Release
Inhibition

Ex Vivo Assays: Thyroid Explant Cultures

- > X. laevis explant culture assays
 - Dissect glands from NF stage 59 tadpoles
 - Culture in 96-well plates
 - Inhibition of bTSH stimulated T4 synthesis and release

In Vitro Assays: Thyroid Explant Cultures

1. Inhibition of T4 Release by Model TH Synthesis Inhibitors

In Vitro Assays: Thyroid Explant Cultures

2. Test positives from TPO inhibition assay

In Vitro Assays: Thyroid Explant Cultures

> TPO inhibitors may be toxic to the cultured glands

Gland Viability (ATP)

Tiered Assay Approach to Prioritization of Chemicals for Further Testing

Amphibian Metamorphosis Assay

- OECD 21d AMA protocol
- Initiate at NF Stage 51
- 21d exposure duration
- continuous flow through waterborne exposure

Endpoints

- Metamorphic Development
- Thyroid Histology

- Thyroidal Iodo-amino Acids by HPLC-ICP/MS
- Serum T4 and T3 by HPLC-ICP/MS
- Sodium Iodide Symporter (NIS) mRNA Expression
- Thyroid Stimulating Hormone by ELISA

MBT Exposure: Tadpole NF Stage Distribution

21 Day MBT Exposure											
[MBT]		Final NF Stage									
(µg/L)		55	56	57	58	59	60	61	62	63	64
0		0	0	0	0	5	38	10	13	32	2
23		0	0	0	0	14	20	9	32	25	0
47		0	0	0	2	15	36	7	27	14	0
109	*	0	2	2	8	17	30	7	30	5	0
214	*	0	2	8	43	37	8	0	2	0	0
435	*	40	33	22	5	0	0	0	0	0	0

MBT Exposure: Thyroid Gland Histology

Effects on Thyroidal Hormones

Reduces monoiodination ——>

Reduces diiodination ----->

Reduces T4 formation ---->

Effect on Circulating Hormones & NIS

Reduces circulating T4 ---->

Increases circulating TSH →→

Increases thyroidal NIS mRNA -----

Effect on Thyroidal Iodide

And...
thyroidal iodide increases
due to reduced TH synthesis
and increased NIS

Summary and Conclusions

- <u>Developed tiered prioritization approach based upon</u>
 <u>the specific pathway of TPO inhibition</u>
 - An important mechanism of action in thyroid toxicology
 - Identified specific activity with TPO assay
 - Demonstrated TH reductions in thyroid gland assay
 - -Confirmed activity and potency in organismal assay

Identified potent chemical

- In vivo results clearly indicate TH synthesis inhibition
- Similar potency to methimazole in vitro/ex vivo
- Very potent chemical in vivo
 - Methimazole effects: 12-25 mg/L
 - MBT: LOEC Histology ≈ 40 ug/L

QUESTIONS?

